Friday, July 07, 2006

Truly ethical (adult to embryonic) stem cells (But . . .)

Last month I reported that International Society for Stem Cell Research meeting in Toronto was to be the site for a report about research from Texas research firm, Pharmafronteirs. The July 6th issue of Nature has a News article on an announcement of the discovery of one way to cause adult cells to become embryo-like stem cells, in a "Simple recipe gives adult cells embyro powers."


Now, Shinya Yamanaka and his colleagues at Kyoto University, Japan, have developed what looks like a good first draft for this recipe, at least in mice. They say it takes only four chemicals. For their experiment, the researchers chose fibroblasts, adult cells that divide quickly and can already give rise to some other types of cell. When they added the four factors to fibroblasts, the team says the cells looked and behaved a lot like mouse embryonic stem cells. "Potentially, if we use these four factors with human cells, we could avoid the ethical issues and make pluripotent cells," says Yamanaka.

The reprogrammed cells pass many of the crucial tests of 'stem-ness'. They express some of the key genes that embryonic stem cells do, can be coaxed to make the three main cell types of the body, and can divide to give more cells like themselves. Yamanaka calls them "embryonic-stem-cell-like cells".
Luck and skill

Yamanaka unveiled his research on 30 June at the International Society for Stem Cell Research in Toronto, Canada, revealing that success involved patience, ingenuity and luck. Over five years, his researchers compiled a list of 24 candidate factors that help stem cells stay flexible. They engineered adult mouse cells so that they would be killed by a drug unless they turned on a gene active only in stem cells. Then the team added genes for the 24 candidate factors to the engineered mouse cells, and dosed them with the drug. Only the stem-cell-like cells survived.

The researchers repeated this experiment, removing one or a few genes at a time, until they arrived at four essential chemicals. Three of the factors — Oct4, Sox2 and c-Myc — were already known to be important for stem-ness. But the fourth was a surprise, says Yamanaka. Stem-cell research is so competitive that he refuses to name this fourth factor until he can publish his work in a scientific journal.

His research adds to work on which factors are key to reprogramming. Ihor Lemischka of Princeton University, New Jersey, and his colleagues have studied 70 genes in mouse embryonic stem cells (J. Silva et al. Nature doi:10.1038/nature04914; 2006). And Austin Smith's team at the University of Edinburgh, UK, is investigating a protein called Nanog (N. Ivanova et al. Nature doi:10.1038/nature04915; 2006). "Several researchers had shown factors that were necessary for programming, but nobody had shown which factors were sufficient," says Yamanaka.

Researchers are impressed and surprised at Yamanaka's achievement, mainly because he gambled everything on the key factors being included within his pool of 24 candidates. "He seems to have hit a home run," says Lemischka.


That meeting also yeilded new international guidelines for embryonic stem cell research, and "standards for obtaining sperm, eggs, embryos, or other cells from human donors." I haven't seen the list of participants on the panel drawing up these guidelines, but I'd bet there's very little variance from the same group that worked up the National Academies of Science.

My conviction that the same little incestuous group, "The Powers That Be" in Bioethics, is making these rules based on their own ideology, I keep remembering the warning, "Don't look behind the curtain. Pay no attention to that little man."

Just to add to the impression that the PTB do not want us to doubt the dogma that embryos must be created and destroyed, the Nature article goes on and on about just that "fact":

But scientists caution that Yamanaka's report has not eliminated the need for work on embryonic stem cells. Researchers must test the same four factors in human cells. And it is not entirely clear whether the reprogrammed cells can do everything that embryonic cells can. Although many of the genes they express are the same, many are not.

Yamanaka's report came just a day after the US Senate said it would vote on relaxing rules on embryonic research later this year. Some have argued that progress in reprogramming has made work on embryonic stem cells unnecessary, and they may seize on Yamanaka's work to bolster this position. But scientists at the Toronto meeting said that would be a mistake.

"There will be people who say that, and they will be wrong," says Lemischka. "There's a lot more work to do to understand these cells. The science is really solid, but it is by no means true that reprogramming has now been solved."

3 comments:

Suricou Raven said...

A similar situation to that of the last post. A hopeful technology, yes - could be very beneficial, and avoid any need for embryonic stem cells at all. But it may not work at all - so dont abandon one hopeful-looking avenue of research just because an alternative has opened. Espicially an alternative that may dead-end.

LifeEthics.org said...

All sorts of things "could be beneficial."
And waste money.

There are many more reasons to believe that Harvard's cloning project and all human embryonic stem cell research are leading to dead ends than to believe that research in adult stem cells will dead end.


Any objection to adult stem cell research will apply to embryonic stem cell research, too.

In situ stimulation and recruitment of autologous or donated stem cells will be the treatment of choice in the future. Transplants will be rare and serve only in cases of trauma-induced emergencies.

In the meantime, let's don't kill anyone in the name of research.

Suricou Raven said...

I am quite confident that if the research didn't have potential, then such academicly-respected people wouldn't be going it. It is expensive, and it brings some bad publicity - do it wont be done unless those in charge expect to see some benefit.

And whats the worst that can happen? A bit of wasted time and money in exchange for some knowledge of no practical use. But knowledge is always good. Knowledge, baring the collapse of civilisation, can never be lost once aquired. Money is temporary.